Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract BackgroundSuboptimal maternal oral health during pregnancy is potentially associated with adverse birth outcomes and increased dental caries risks in children. This study aimed to assess the oral microbiome and immune response following an innovative clinical regimen, Prenatal Total Oral Rehabilitation (PTOR), that fully restores women’s oral health to a “disease-free status” before delivery. MethodsThis prospective cohort study assessed 15 pregnant women at baseline and 3 follow-up visits (1 week, 2 weeks, and 2 months) after receiving PTOR. The salivary and supragingival plaque microbiomes were analyzed using metagenomic sequencing. Multiplexed Luminex cytokine assays were performed to examine immune response following PTOR. The association between salivary immune markers and oral microbiome was further examined. ResultsPTOR was associated with a reduction of periodontal pathogens in plaque, for instance, a lower relative abundance ofTannerella forsythiaandTreponema denticolaat 2 weeks compared to the baseline (p < 0.05). The alpha diversity of plaque microbial community was significantly reduced at the 1-week follow-up (p < 0.05). Furthermore, we observed significant changes in theActinomyces defective-associated carbohydrate degradation pathway andStreptococcus Gordonii-associated fatty acid biosynthesis pathway. Two immune markers related to adverse birth outcomes significantly differed between baseline and follow-up. ITAC, negatively correlated with preeclampsia severity, significantly increased at 1-week follow-up; MCP-1, positively correlated with gestational age, was elevated at 1-week follow-up. Association modeling between immune markers and microbiome further revealed specific oral microorganisms that are potentially correlated with the host immune response. ConclusionsPTOR is associated with alteration of the oral microbiome and immune response among a cohort of underserved US pregnant women. Future randomized clinical trials are warranted to comprehensively assess the impact of PTOR on maternal oral flora, birth outcomes, and their offspring’s oral health.more » « less
- 
            The COVID-19 pandemic has motivated building operators to improve indoor air quality (IAQ) through long-term sustainable solutions. This paper develops a modeling capability using the Modelica Buildings library to evaluate three indoor virus mitigation strategies: use of MERV 10 or MERV 13 filtration and supply of 100% outdoor air into a building with MERV 10 filtration. New evaluation metrics are created to consider the impact of improving IAQ on financial and environmental costs. The mitigation strategies are studied for medium office buildings in three locations in the United States with differing climates and electricity sources. The results show that use of 100% outdoor air can significantly improve IAQ with limited increases in costs in the milder climate, but leads to very high costs in the hot and humid and very cold climates. MERV 13 filtration can improve IAQ relative to MERV 10 filtration with small increases in costs in all locations.more » « less
- 
            Untreated tooth decays affect nearly one third of the world and is the most prevalent disease burden among children. The disease progression of tooth decay is multifactorial and involves a prolonged decrease in pH, resulting in the demineralization of tooth surfaces. Bacterial species that are capable of fermenting carbohydrates contribute to the demineralization process by the production of organic acids. The combined use of machine learning and 16s rRNA sequencing offers the potential to predict tooth decay by identifying the bacterial community that is present in an individual’s oral cavity. A few recent studies have demonstrated machine learning predictive modeling using 16s rRNA sequencing of oral samples, but they lack consideration of the multifactorial nature of tooth decay, as well as the role of fungal species within their models. Here, the oral microbiome of mother–child dyads (both healthy and caries-active) was used in combination with demographic–environmental factors and relevant fungal information to create a multifactorial machine learning model based on the LASSO-penalized logistic regression. For the children, not only were several bacterial species found to be caries-associated ( Prevotella histicola, Streptococcus mutans , and Rothia muciloginosa ) but also Candida detection and lower toothbrushing frequency were also caries-associated. Mothers enrolled in this study had a higher detection of S. mutans and Candida and a higher plaque index. This proof-of-concept study demonstrates the significant impact machine learning could have in prevention and diagnostic advancements for tooth decay, as well as the importance of considering fungal and demographic–environmental factors.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
